Practical Fault Detection in Puppet Programs

Thodoris Sotiropoulos,* Dimitris Mitropoulos*’ and Diomidis Spinellis*
*Athens University of Economics and Business
T National Infrastructures for Research and Technology - GRNET
{theosotr,dimitro,dds}@aueb.gr

ABSTRACT

Puppet is a popular computer system configuration management
tool. By providing abstractions that model system resources it al-
lows administrators to set up computer systems in a reliable, pre-
dictable, and documented fashion. Its use suffers from two poten-
tial pitfalls. First, if ordering constraints are not correctly spec-
ified whenever a Puppet resource depends on another, the non-
deterministic application of resources can lead to race conditions
and consequent failures. Second, if a service is not tied to its re-
sources (through the notification construct), the system may operate
in a stale state whenever a resource gets modified. Such faults can
degrade a computing infrastructure’s availability and functionality.

We have developed an approach that identifies these issues
through the analysis of a Puppet program and its system call trace.
Specifically, a formal model for traces allows us to capture the inter-
actions of Puppet resources with the file system. By analyzing these
interactions we identify (1) resources that are related to each other
(e.g., operate on the same file), and (2) resources that should act as
notifiers so that changes are correctly propagated. We then check
the relationships from the trace’s analysis against the program’s
dependency graph: a representation containing all the ordering con-
straints and notifications declared in the program. If a mismatch is
detected, our system reports a potential fault.

We have evaluated our method on a large set of popular Pup-
pet modules, and discovered 92 previously unknown issues in 33
modules. Performance benchmarking shows that our approach can
analyze in seconds real-world configurations with a magnitude
measured in thousands of lines and millions of system calls.

CCS CONCEPTS

« Software and its engineering — Software reliability; Soft-
ware testing and debugging; File systems management.

KEYWORDS

Puppet, Ordering Relationships, Notifiers, Program Analysis, Sys-
tem Calls

ACM Reference Format:

Thodoris Sotiropoulos,* Dimitris Mitropoulos*' and Diomidis Spinellis*.
2020. Practical Fault Detection in Puppet Programs. In Proceedings of the
42nd International Conference on Software Engineering (ICSE °20). ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE °20, May 23-29, 2020, Los Alamitos, CA, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-XxXX-X/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The prevalence of cloud computing and the advent of microservices
have made the management of multiple deployment and testing
environments a challenging and time-consuming task [8, 23, 25, 34].
Infrastructure as Code (IaC) methods and tools automate the setup
and provision of these environments, promoting reliability, docu-
mentation, and reuse [34]. Specifically, IaC (1) boosts the reliability
of an infrastructure, because it minimizes the human intervention
which is both laborious and error-prone; (2) ensures the predictabil-
ity and consistency of the final product, because it eases the rep-
etition of the steps followed to produce a specific outcome; and
(3) allows the documentation and reuse of a system’s configura-
tion, because it associates the system’s configuration with modular
code [15, 23, 34, 38, 39].

Puppet [21] is one of the most popular system configuration
tools used to manage infrastructures [28, 32]. It abstracts the state
of different system entities such as files, users, software packages,
or running processes, in a declarative manner using built-in primi-
tives called resources. A Puppet program consists of a collection of
resources that the underlying execution engine applies one-by-one
so that the system eventually reaches the desired state.

By default, any execution sequence of resources is valid, un-
less there are specific ordering constraints imposed by their inter-
dependencies, e.g., an Apache service should be run only after the in-
stallation of the corresponding package. Developers need to declare
these ordering constraints in the program to avoid erroneous exe-
cution sequences, such as trying to start a service before the instal-
lation of its package. Conceptually, Puppet captures all the ordering
relationships defined in a program through a directed acyclic graph
and applies each resource in topological ordering. In this context,
all the unrelated resources are processed non-deterministically. Fur-
thermore, Puppet allows programmers to apply certain resources
whenever specific events take place via a feature called notification.
Notifications propagate changes to related resources, ensuring that
their state is up-to-date. For instance, when a configuration file
changes the corresponding service has to be notified so that it will
run with the new settings.

Tracking all the required ordering constraints and notifications
is a complicated task though, mostly because developers are not
always aware of the actual interactions of Puppet with the under-
lying operating system. Notably, such errors can have a negative
impact on the reliability of an organization’s infrastructure leading
to inconsistencies [32] and outages [10]. For example, Github’s ser-
vices became unavailable when a missing notifier in their Puppet
codebase caused a chain of failures, such as DNs timeouts [10].

Approaches that automatically detect these mistakes in produc-
tion code [13, 32] have significant room for improvement, facing
limitations that prevent them from being practical. Rehearsal [32]

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICSE ’20, May 23-29, 2020, Los Alamitos, CA, USA

employs static code verification to detect faults in Puppet programs.

Nevertheless, it cannot manage realistic cases because it is unable

to handle Puppet resources that abstract arbitrary shell commands.

Notably, such resources (e.g., exec) are highly pervasive as they

appear in the 56% of the top-1000 most widely used Puppet modules

found in the Forge Apr1 [27]. Additionally, the model-based testing
approach adopted by Citac [13] imposes a significant overhead

(analyzing around 100 modules with Citac takes roughly 9 days)

and restrictions on the supported Puppet programs under test (they

must be able to run in Docker containers). It also requires extra
instrumentation to be added in the execution engine of Puppet.

Finally, none of those tools addresses missing notification faults.
We have developed a practical and effective approach to iden-

tify faults involving ordering violations and notifiers in Puppet

programs. To do so, we record the system call trace produced by

a single Puppet execution. Then, we operate as follows. First, we

model the system call trace of a Puppet execution in a representation

(namely, FStrace) that allows us to precisely capture the interac-

tions of higher-level programming constructs (Puppet resources)

with the file system. By examining their interplays, we infer the
set of the expected relationships of every Puppet resource with
each other. These relationships correspond to either notifications

(e.g., resource x should notify resource y) or ordering constraints

(e.g., x should run before y). Then, for the given Puppet program,

we statically build the dependency graph that reflects all the order-

ing relationships and notifications that have been specified by the
developer. Finally, we verify whether the expected relationships

(as specified from the analysis of traces) hold with respect to the

dependency graph. Unlike previous tools [13, 32], our approach

(1) can reason about which system resources are affected by the

program’s execution and how, and (2) requires only a single Puppet

run for discovering issues.

Contributions. Our work makes the following contributions:

e We introduce FStrace, a representation for system call traces that
models the intricate semantics of system calls and their effects on
the file system. Building upon FStrace, we propose a novel trace
analysis that allows us to infer the inter-relationships among
Puppet resources (Section 3).

e We provide a framework and its open-source implementation
for detecting faults regarding ordering violations and notifiers
in Puppet programs. To the best of our knowledge, it is the first
to deal with issues involving notifiers (Sections 4, 5).

e We demonstrate the effectiveness and performance of our tool
on 354 Puppet modules. Specifically, our tool was able to detect
92 previously unknown faults in 33 modules, including well-
established ones. More than a half of the issues (62 out of 92)
were confirmed and fixed by the developers. This implies that
our tool is capable of discovering faults that are useful to the
Puppet community (Section 6).

Availability. The source code of our implementation is available

as open-source software under the GNU General Public License v3.0
at https://github.com/AUEB-BALab/fsmove/.

2 OVERVIEW

We provide a brief overview of Puppet, two motivating examples
that demonstrate the types of errors our approach detects, and how
our approach is structured.

Thodoris Sotiropoulos,* Dimitris Mitropoulos*¥ and Diomidis Spinellis*

1 package {"mysql-server": ensure => "installed" }
2 file {"/etc/mysql/my.cnf":

3 ensure => "file",

4 content => "user db settings..."

5 require => Package["mysgl-server"]

6 %}

7 exec {"Initialize MySQL DB":

8 command => "mysqld --initialize",

9 require => Package["mysql-server"]

10}

Figure 1: A program missing an ordering relationship.

Puppet. Puppet allows developers to describe the desired state of
a system through a declarative specification language. For example:

$service_name = "apache2"

$conf_file = "/etc/apache2/apache2.conf"
package {$service_name: ensure => "installed"}
file {$conf_file: ensure => "file"}

service {$service_name: ensure => "running"}

QR W N e

The code above indicates that the apache2 package should be
installed in the host, the file apache2.conf should exist in the
/etc/apache2/ path, and that the Apache server should be run-
ning. There are diverse types for abstracting system resources,
including file; package, service, exec. Also, the Puppet lan-
guage provides variable declarations that begin with the “$” symbol
(e.g., $service_name, $conf_file), conditionals, loops, and—for
reusability—supports the creation of custom resources and classes.

Puppet code is stored in files called manifests. Puppet compiles
manifests into executables called catalogs. Catalogs are json docu-
ments that specify all the resources that Puppet needs to apply in
a particular system to reach the desired state [19]. The following
JSON snippet shows a part of the catalog derived from the previous
Puppet code:

1 "resources": [{

2 "title": "/etc/apache2/apache2.conf",
3 "type": "File",

4 "parameters": { "ensure": "file" }

5 3}, { /* another resource... %/ }]

The field resources contains the Puppet resources declared in
the initial program along with their parameters. During cat-
alog compilation, every variable defined in the manifests re-
solves to its value, e.g., the variable $conf_file resolves to
/etc/apache/apache2.conf (line 2 of the earlier Puppet code).
Puppet evaluates the compiled catalogs and applies potential
changes if the system is not in the appropriate state. For example,
if a file does not exist at a certain location, Puppet will create it.
Motivating Examples. We present two examples of faulty pro-
grams that demonstrate the issues that our approach addresses.
Missing Ordering Relationships (MOR) occur when a developer
fails to define a happens-before relation between two Puppet re-
sources that depend on each other. This can lead to unstable code
that behaves correctly in some circumstances, but breaks in others
depending on the order in which Puppet processes resources.
Consider the real-world Puppet program shown in Figure 1 that
sets up the MySQL database in a server. First, the code declares the
installation of the mysql-server package (line 1), which—among
other things—creates the /etc/mysql/my. cnf file that contains the
default database settings. Then, it configures this file (lines 2-6)
whose contents are specified by the content parameter at line 4.
Note that Puppet evaluates the file resource after package. This

https://github.com/AUEB-BALab/fsmove/

Practical Fault Detection in Puppet Programs

package {["libssl", "apache2"]: ensure => "latest" }
file {"/etc/apache2/apache2.conf":

ensure => "file",

require => Package["apache2"]

service {"apache2":
ensure => "running",
subscribe => [Package["apache2"],

1
2
3
4
5 3
6
7
8
9 File["/etc/apache2/apache2.conf"]]

Figure 2: A program missing a notifier.

is expressed through the require property at line 5. In lines 7 to
10, the program declares the execution of a shell script (mysqld
--initialize) that prepares the database according to the settings
specified in the /etc/mysql/my.cnf file. Although the shell com-
mand needs to be invoked only after the file /etc/mysql/my.cnf
is configured (lines 2-6), the require parameter at line 9 omits
this dependency. Therefore, applying the exec resource before
file makes Puppet set up the database with incorrect settings. A
static analyzer (such as Rehearsal) cannot extract this dependency
because it is unable to infer that the underlying shell command
(mysqld --initialize) consumes the database configuration file.

Missing Notifiers (MN). Notifiers are necessary for services. An
update to a resource (e.g., configuration file) could directly affect the
state of a service. To ensure that all services are running on a fresh
environment, Puppet triggers the restart of a service whenever
there is a change to one of the service’s dependent resources via
notifications declared by the programmers.

A missing notifier issue is illustrated in Figure 2. The code first
installs the latest version of the 1ibssl and apache2 packages (line
1), configures the file located at /etc/apache2/apache. conf (lines
2-5), and then, boots the Apache server (lines 6-10). The subscribe
primitive (line 8) creates a notifier that restarts Apache whenever
there is a change to the corresponding configuration file or an up-
date to the apache2 package (e.g., a newer version is installed in
the system). However, the code lacks a notifier from the libssl
package to the Apache service. A change to 1ibssl requires the
restart of Apache so that the server maps the updated version of the
library to its memory (i.e., Apache maps the /usr/1ib/libssl.so
file created during the installation of the 1ibssl package). Failing
to do so makes the server not get the latest updates or security
patches of the library. Once again, a static analyzer is not capable
of inferring such dependencies (i.e., the fact that Apache depends
on /usr/1lib/1ibssl. so), because they are hidden from the corre-
sponding manifests.

Framework. To address these issues, we propose a framework—
illustrated in Figure 3—that consists of the following components.
The executor applies the Puppet manifests given as input by invok-
ing the actual Puppet execution engine. Also, the executor inter-
cepts Puppet as follows. First, it stores the compiled catalog of the
program before it is applied to the system, and second, it monitors
the system calls of the Puppet process and its descendants, generat-
ing the system call trace that stems from the catalog application.

The analyzer (Section 3) operates on the system call trace pro-
duced by the executor, and performs two steps. In the first step
(parser), the analyzer splits system calls into different blocks corre-
sponding to the execution of every Puppet resource defined in the
initial program. Then, it parses the system call trace and transforms

ICSE °20, May 23-29, 2020, Los Alamitos, CA, USA

t ~[Manifest |

[Trace } Executor

F *[Catalog]

Fault
Detector

Figure 3: The architecture of our framework.

it into an FStrace representation, which is used to model the seman-
tics of every system call and their effects on the file system. In the
next phase (interpreter), the analyzer evaluates the resulting FStrace
program and infers the set of relationships (i.e., ordering constraints
and notifications) between the declared Puppet resources. To do so,
it inspects their interactions with the file system in terms of the
files consumed, produced, expunged by their execution.

Finally, the fault detector (Section 4) first builds the dependency
graph by examining the parameters of every Puppet resource spec-
ified in the compiled catalog given as input. The dependency graph
is a directed acyclic graph that contains all the actual ordering rela-
tionships and notifications declared in the original Puppet program
by the programmer. Then, the fault detector compares the gener-
ated graph against the expected relationships inferred from the
output of the analyzer. If a mismatch is identified, the fault detector
reports a potential fault.

Trace Example. In order to generate traces, the executor em-
ploys a system call tracing program [22, 30], namely, strace. Fig-
ure 4 presents an excerpt from the trace of the program of Figure 1.
Each line denotes an invocation of a system call along with the pro-
cess (PID) that triggered it. For example, the entry 103 close(7)
= 0 states that the process with 1p = 103, invoked close with
7 as an argument, and that system call returned 0. By further
inspecting Figure 4, we observe that Puppet initially processes
the Exec[Initialize MySQL DB] resource (lines 1-6), and then
the File[/etc/mysql/my.cnf] resource (lines 7-12). Observe the
calls of write at lines 1, 6-7, 12 that correspond to messages printed
to the standard output by Puppet engine for debugging purposes.
These messages indicate the points where the application of each
resource starts and ends respectively. The analyzer exploits these
points to classify system calls according to the Puppet resource
they come from (Section 3.2).

3 ANALYZING SYSTEM CALL TRACES

To tackle the complexity and interactions of realistic system call
traces (Section 3.1), we design our trace analysis as an interpretation
over a trace language used to abstract each system call and map it to
the Puppet resource it comes from (Section 3.2). The output of the
analysis is the set of the expected relationships (ordering constraints
and notifications) among declared resources. To produce this output,
the analysis examines the file system interactions stemming from
Puppet execution in terms of the files that are consumed, produced,
or expunged (Section 3.3). The analysis output is later used by our
fault detector (Section 4).

ICSE ’20, May 23-29, 2020, Los Alamitos, CA, USA

Thodoris Sotiropoulos,* Dimitris Mitropoulos*¥ and Diomidis Spinellis*

103 write(1, "Info: /Stage[mainl]/Exec[Initialize MySQL DB]: Starting to evaluate the resource", 80) = 80
L.) =0
clone(child_stack=NULL, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD, child_tidptr=0x7f70159c39de) = 660

1

2 103 execve("/usr/sbin/mysqld", ["/usr/sbin/mysqld", "--initialize"],

3 650

4 660 open("/etc/mysql/my.cnf", O_RDONLY) = 3

5 660 read(3, "default content..."..., 44) = 44

6 103 write(1, "Info: /Stage[main]/Exec[Initialize MySQL DB]: Evaluated in 1.85 seconds", 72) = 72
7 103 write(1, "Info: /Stage[main]/File[/etc/mysql/my.cnf]: Starting to evaluate the resource", 78) = 78
8 103 open("/etc/mysql/my.cnf20190128-32-15kba2r", O _RDWR|O_CREAT, 0600) = 7

9 103 write(7, "db settings..."..., 48) = 48

10 103 close(7) = @

11 103 rename("/etc/mysql/my.cnf20190128-32-15kba2r", "/etc/mysql/my.cnf") = @

12 103 write(1, "Info: /Stagelmain]/File[/etc/mysql/my.cnf]: Evaluated in 0.06 seconds", 70) = 70

Figure 4: An example of trace produced by the strace utility.

3.1 Motivation of Design Choices

Previous work on trace analysis has focused on extracting depen-
dencies from build scripts (e.g., Make for C/C++ programs) for test-
ing and refactoring purposes [11, 20], or identifying license incon-
sistencies in software projects [37]. These approaches cannot apply
to the domain of Puppet for the following two reasons.

Low Fidelity. Typically, the system call traces that come from
the execution of Puppet manifests are far more complex than those
of build scripts. Indeed, Puppet traces involve the application of
diverse entities—such as, execution of arbitrary scripts, configura-
tion and management of different services, installation of packages,
and more—that apart from simply reading and writing files, they
perform many operations on the transient OS structures (e.g., file
descriptor table, process table, etc.).

For a precise trace analysis (e.g., correctly resolving the absolute
file paths that a system call works on), we need to accurately track
all the operations performed on these structures. This requires a
careful design to deal with the complexities and semantics of the
system calls as well as the underlying structure of the file system.
For instance, many processes spawned by Puppet share their file
descriptor table or working directory with their child processes.!
Hence, any update to any of those entities performed by one process,
also affects the other one. By ignoring this behavior, processes will
hold stale information about their file descriptor table and working

directory.
As another example, consider the following trace:

1 100 open("/usr/lib/perl5", O_RDONLY) = 3
2 100 rename("/usr/lib/perl5", "/usr/lib/perl") = @
3 100 openat(3, "5.26/Socket6.pm", O RDONLY) = 4

To determine the absolute path that openat operates on
(/usr/1lib/perl/5.26/Socket6.pm), we have to interpret the file
5.26/Socket6.pm relative to the directory related to the file de-
scriptor 3. To do so, we need to consider that in a Unix-like file
system, every file is associated with an inode rather than a path.
Thus, the file-related OS structures (e.g., file descriptor table) have
to refer to inodes instead of path names. Existing approaches that
ignore the organization of the file system, either cannot resolve the
absolute path of the openat system call [37] (they do not support
file descriptors), or they describe files through their paths [20]. The
latter makes the corresponding file descriptor table hold the stale
entry (3, /usr/1lib/perl5), after the rename at line 2.

!For example, in Linux, this can be achieved through the CLONE_FD and CLONE_FS
flags passed in the clone system call.

Granularity. Given the system call trace of a build script, such as
Make, previous approaches assume that every step of a project build
is performed through a separate process [20,37]. In this context,
the analysis estimates the dependencies among source files (e.g., the
object file foo.o depends on the header file bar . h) by computing
the input and output files of each process (i.e., it presumes that the
output depends on the input). To verify the inferred dependencies,
the existing work [20] triggers incremental builds by touching the
input files, and then checks whether the output files are indeed
changed in response to the updates of their dependencies.

However, the granularity of processes is not fruitful for domains,
such as Puppet, where the same process may handle different ex-
ecution phases. In such cases, the existing work [20] is not able
to distinguish which file system resources are affected by which
execution phase—and therefore, it is not able to infer the inter-
relationships among execution steps.

We design an approach on analyzing system call traces that
overcomes the limitations of the previous approaches as follows.
To tackle low fidelity, we introduce FStrace, a representation that
enables us to: (1) translate every system call into primitives that
conquer the large number and complexity of Posix (Unix/Linux)
system calls by decomposing them into simpler building blocks
(Section 3.2), and (2) formally model the effects of system calls on
the file system and the transient OS structures (Section 3.3.1).

To address granularity, we split the main process that governs
the execution (Puppet process) into different blocks that indicate the
boundaries of every execution phase (Puppet resource). This allows
us to infer the inter-relationships between all Puppet resources by
examining their interactions with the underlying operating system
(Section 3.3.2). In turn, this enables us to combine (as explained in
Section 4) the trace analysis output (low-level analysis) with the
program’s relationships inferred statically by analyzing compiled
Puppet catalogs (high-level analysis). This makes our approach
efficient, as we are able to detect faults by monitoring only one
Puppet execution, i.e., we do not need to apply Puppet manifests
multiple times (as in the case of incremental builds) to verify the re-
lationships extracted by the trace analysis. Note that our treatment
of system call traces is generic and can be applied to other domains
such as Make or Java Maven. In this case, the boundaries of every
execution phase correspond to the application of every build rule.

3.2 Modeling System Call Traces

The first step of our analyzer is to parse a given system call trace
and transform it into an FStrace representation. FStrace primitives
are designed to model system calls that operate on file system

Practical Fault Detection in Puppet Programs

fe€F=2 ze€Proc=Z" beBlockID, v € File, p € Path=2v"

e € Trace == x*

x € Block :=begin b (z, s)" end

s € Sys == delfd f | dupfd f; f> | hpath d p m | hpathsym d p m |
link d; p; d; p» | newfd d p f | newproc c¢* f |
rename d; p; dy p; | setewd p | symlink d p; p2 | nop
m € Eff ::= consumed | produced | expunged
c € Flags =:=1fd | cwd
d € DirFd == f | at_fdewd

Figure 5: The syntax of FStrace.

resources. Some of the constructs are generic enough so that they
can represent a family of system calls. Complex system calls are
represented with a number of FStrace primitives—something that
decouples their intricacies from each other. We group system calls
into execution blocks, and we assign a unique 1D to each of them.

The syntax of FStrace is shown in Figure 5. It consists of file
names, paths—which are sequences of file names—and file descrip-
tors represented by either an integer or the at_fdewd construct. We
also include: (1) the constructs fd and cwd that indicate what kind
of entities a spawned process shares with its parent, (2) primitives
(consumed, produced, expunged) that stand for the types of the ef-
fect that a system call has on a file, and (3) an infinite set of unique
identifiers for execution blocks. A trace is a sequence of blocks. A
block has the following syntax: begin b (z, s)* end, where b is its 1D
and (z, s)" is a sequence of trace entries. Each pair (z, s) is a process
1D (PID), which is a positive integer, and a system call.

FStrace models every system call s € Sys using eleven constructs.
We have setcwd that changes the working directory of the current
process, and three primitives for performing operations on file
descriptors: (1) newfd creates a new file descriptor and relates it to
the given path p, (2) delfd deletes the provided file descriptor from
the corresponding table of the process, and (3) dupfd copies a given
file descriptor and is used to model a number of system calls, such
as dup-like system calls or fcntl(fd, F_DUPFD). FStrace supports
hard and symbolic links through the link and symlink constructs
respectively, while it offers newproc for spawning new processes.
FStrace models operations on file paths explicitly through the hpath
primitive. hpath d p m captures the effect m that a system call has
on the pathp. We consider p relative to the file descriptor d, when
p is not an absolute path. When d is at_fdcwd, we interpret p as
relative to the current working directory. hpath models the system
calls that work on file paths. For instance, we represent the system
call mkdir("foo/bar")—which creates a new directory at path
foo/bar—as hpath at_fdewd (“foo”, “bar”) produced. The hpathsym
primitive operates in a way similar to hpath. In hpathsym though, if
the given path is a symbolic link, we do not dereference it. Through
hpathsym we express system calls that do not follow symbolic links
such as 1stat, Ichown, 1getxattr. The rename primitive arranges
that an existing path is accessed through a new file path. Finally,
FStrace has a dedicated construct (nop) to model all system calls
that we do not need to take into account, e.g., write, read, sync.

To leverage FStrace, the analyzer classifies system calls according
to the applied Puppet resource that triggered them. Our analyzer
presumes that an execution block begins or ends when the evalu-
ation of the corresponding resource starts or terminates, because
Puppet processes every resource atomically. In this context, the

ICSE °20, May 23-29, 2020, Los Alamitos, CA, USA

begin Exec[Initialize MySQL DB]
103 hpath (usr, sbin, mysqld) consumed # execve
650 newproc {} 660 # clone
660 hpath at_fdcwd (etc, mysql, my.cnf) consumed # open
660 newfd at_fdcwd (etc, msql, my.cnf) 3 # open
660 nop # read
end
begin File[/etc/mysql/my.cnf]
103 hpath at_fdewd (etc, mysql, my.cnf20190128-32-15kba2r)
produced # open
10 103 newfd at_fdcwd (etc, mysql, my.cnf20190128-32-15kba2r)
7 # open
1 103 nop # write
12 103 delfd 7 # close
13 103 hpath at_fdcwd (etc, mysql, my.cnf20190128-32-15kba2r)
expunged # rename
14 103 hpath at_fdewd (etc, mysql, my.cnf) produced # rename
15 103 rename at_fdcwd (etc, mysql, my.cnf20190128-32-15kba2r)
at_fdewd (etc, mysqgl, my.cnf) # rename

O NG R W N e

16 end
Figure 6: The FStrace representation of the trace of Figure 4.

name of the execution block corresponds to the name of the Puppet
resource. It is easy to identify the points where the evaluation of
a Puppet resource starts/finishes by decoding the Puppet’s debug
messages. Recall from Figure 4 that those messages appear in the
execution traces as writes to the standard output. During trace pars-
ing, the analyzer detects those debug messages and marks them as
the entry and exit points of execution blocks.

For example, consider again the trace in Figure 4. We can model
the trace entry at line 1 as the entry point of an execution block
whose name is “Exec[Initialize MySQL DB]”, whereas the sys-
tem call at line 6 signals the ending of that execution block. Hence,
all system calls that appear between lines 1 and 6, are included
in this block. Figure 6 shows the complete FStrace representation
of the trace shown in Figure 4. Notice that some system calls are
represented through a number of FStrace primitives. For instance,
we model open("/etc", O_RDONLY)=3 with hpath to indicate that
we consume the file /etc, and newfd to associate the provided path
with the file descriptor 3 returned by open.

3.3 Interpreting FStrace Programs

To infer the ordering and notification relationships among Pup-
pet resources, the analyzer enumerates the set of files consumed,
produced or expunged in every execution block. This is done by in-
terpreting the FStrace program produced by the parser (Section 3.2).

teINode={1; |i€Z'}U{1,} ae€ldent={a;|icZ"}
7 € INodeT = (INode x Filename) — INode

7 € FdT = Ident — (F — INode)

v € ProcT = Proc — (Ident X Ident)

¢ € CwdT = Ident < INode

k € SymT = INode — Path

p € FSAcc = Path — P(Eff x BlockID)

Figure 7: Semantic domains for FStrace.
3.3.1 Domains and Semantics. We define a semantics for FStrace

that we use as a base for our interpretation. Figure 7 illustrates
the semantic domains of FStrace. The FStrace state consists of

ICSE ’20, May 23-29, 2020, Los Alamitos, CA, USA

six components: An inode table 7 € INodeT is a map of a pair,
consisting of an inode and a file name to another inode. The first
element of the pair is the inode of the directory where the file name
exists. An inode is a positive integer that acts as the identifier for
a certain file system resource. Note that we also keep the special
inode i which corresponds to the inode of the root directory “/”. A
file descriptor table 7 € FdT maps an identifier and a file descriptor
to an inode. We use this component to map the open file descriptors
of a process to the resource they handle. The CwdT element maps
a unique identifier to an inode. That inode stands for the current
working directory of a process.

Each process points to a pair of unique identifiers (see the domain
ProcT). The first element of the pair is the identifier corresponding
to the file descriptor table of the process. The second element of
the pair reflects the identifier that stands for the current working
directory of the process. This part of the state allows us to model
the case where two different processes might share the same file
descriptor table or working directory. For example, in the following
entries: [(z1 — (a1,@2)), z2 — (a1, @3)], the processes z; and z3
point to the same file descriptor table because the first elements of
their pairs are identical (o). Similarly, since their second identifiers
do not match (az # a3), we presume that they do not share the
same working directory; thus, any change imposed by one process
does not affect the other one.

We use the table k € SymT to store symbolic links. Each sym-
bolic link is an inode that points to a file path. The last compo-
nent of FStrace (p € FSAcc) maps path names to an element of
the power set of blocks and effects. Specifically, this component
tracks where and how each path is accessed. For example, the entry
/foo — {(produced, b;), (consumed, by)} indicates that the path
/foo is produced in the block b; and consumed in by. We exploit
this component later on to extract the ordering and notification re-
lationships of every block with each other. The state (z; 7, @, v, k, p)
is a tuple consisting of the six components described above.

Figure 8 shows a small subset of the interpretation rules of FS-
trace.? Each rule defines state transitions as follows:

b,e
(r, 7, ¢y, 1, p) —> (', 7’ ¢, v k", p”)

The relation b’—e> indicates that given a trace entry e (a pair of
a PID and a system call) in execution block b, the initial state
(r, 7, P, v, K, p) transitions to a new state (', n’,¢’,v’,k’, p’). The
binary operator :: denotes the addition of an element to a set,
while |; manifests the projection of the i element. The function
Ab(d, p, . . .) gives the absolute path of the path p relatively to the
given file descriptor d. The function I(p, 7) computes the inode
that the path p points to based on the inode table 7. For example,
the [HPATH] rule records the effect m that a system call has in the
current execution block b by updating the p component of the state.

3.3.2 Inferring Relationships. Based on the state derived from the
interpretation of an FStrace program, we now formally define the or-
dering and notification relationships between two Puppet resources.
To achieve this, we exploit the computed file accesses performed in
every block as defined in the resulting state (p € FSAcc). Recall that
the component p shows the set of files that are consumed, produced
and expunged inside every execution block.

2The rest rules are described in the long version of the paper.

Thodoris Sotiropoulos,* Dimitris Mitropoulos*¥ and Diomidis Spinellis*

NEWPROC-SHARE
e = z, newproc (fd, cwd) f
(a1, @) =v(z) V' =V[f > (a1, @2)]

b,
(T, 70, v K6, p) = (7, 70, b, Vs K, p)

DUPFD
e =z, dupfd fi f2
a=vx)li =) 7 =alla - r@lf -)]
(t, 7, s v, K0 p) 255 (2, 7, v, K, p)
HPATH

e =z hpathd pm
m # expunged p =Ab(d, p,...)
p"=xU@, 1) p’#undef p'=p[p” — (m, b): p(p”)]

b,
(T, 7, v, K, p) — (2o 70, by Vs K, p')

Figure 8: A subset of the interpretation rules of FStrace.

Ordering Relationship. For ordering relationships we consider
that a block b1 producing a certain file p must precede a block b, that
consumes or expunges the same file p. If this is not the case—and
assuming that by does not create p—there is an ordering violation.
Formally, given the p instance found in the FStrace state we define
the ordering relationship <,, which states that the block b; comes
before by, as follows:

by <p by = (1)
Jp € Path,m € Ef f. m # producedA

(produced, b1) € p(p) A (m, bz) € p(p) A (produced, b2) ¢ p(p)

Consider again the program of Figure 6. After interpreting it, the
analyzer outputs the following relationship: file <, exec, where
exec stands for the block Exec[Initialize MySQL DB] (lines 1-
7), while file corresponds to File[/etc/mysql/my.cnf] (lines
8-16). In particular, exec consumes the file /etc/mysql/my.cnf
at line 4, while file produces the same file at line 14. According to
the Definition 1, the creation of the file must be processed fist, so
the analyzer presumes that the block file must precede exec.

Notification Relationship. In order to define the notification
relationship we first need to identify pairs of execution blocks where
the application of the first element should trigger the application
of the second one. In the context of Puppet, such relationships
involve service resources. Specifically, we look for blocks that
produce a particular resource p. These blocks must have notification
relationships with service-oriented blocks consuming the resource
p. Formally, based on the component p € FSAcc of the state, we
introduce the notification relationship ~», that represents that the
block by notifies by:

bl ~p bg = (2)
dp € Path,m € Ef f. isService(bz)A
(b1, produced) € p(p) A (b2, consumed) € p(p)

4 DETECTING FAULTS

Having introduced our approach for analyzing traces, we locate
faults in Puppet manifests by combining the analysis output with
the compiled catalog of a program. Our fault detection method per-
forms two tasks: (1) given a catalog, it builds the dependency graph,

Practical Fault Detection in Puppet Programs

Figure 9: The dependency graph of the program of Figure 1.

a directed acyclic graph that captures all the ordering relationships
and notifications declared by the developer (Section 4.1), and then,
(2) it verifies that the relationships inferred by the trace analysis
step appear in the dependency graph (Section 4.2).

4.1 Dependency Graph Construction

We define the dependency graph as DG = (V,E), where V is the
set of Puppet resources, E C V X V X L is the set of edges, and
L = {before, notify}, a set of labels that we assign to every edge.

before
Anedge — from a source node s to a target ¢ indicates that Puppet

applies s before t. An edge "% denotes that, apart from preceding
t, s also notifies the target whenever there is an update to itself.
When a node t is reachable from s, we presume that the application
of s happens before that of . On the other hand, a node notifies a

target when they are connected with a path where all edges are
notify

— . This is explained by the fact that the sy edges transitively
trigger updates to all the intermediate nodes between the source
and the target resource.

To construct the graph, we parse a program’s catalog, and we
examine the parameters of every Puppet resource (recall Section 2).
Specifically, given the parameters of a resource p, we create edges
as follows.

e p has the parameter "before":v. This indicates that the re-
source p is applied before every resource included in the value

of "before". In this case, we add a ey edge from p to every
element of the list v.

o phas the parameter "require" : v. This indicates that Puppet pro-
cesses p after every element included in the value of "require".

Thus, we create a b edge from every element of v to p.
e p has the parameter "notify":v. The same as the "before"

notify
parameter, but this time, we create B edges.
o phas the parameter "subscribe":v. The same as the "require"

. N notify
parameter, but this time, we create — edges.

Figure 9 depicts the dependency graph of the program of Figure 1.
We observe that the configuration file (i.e., the node conf) has
neither an ordering nor a notification relationship with the service,
because the corresponding nodes are not connected to each other.

4.2 Fault Detection

Algorithm 1 summarizes our fault detection approach. The algo-
rithm expects as input the relationships of every Puppet resource as
specified by the analysis of traces, and a dependency graph g € DG
generated by the previous step. For every ordering relationship
between two resources (b1 <, bz), the algorithm consults the de-
pendency graph to determine whether there is path from b; to by,
i.e., it checks whether this ordering relationship actually appears in
the program. If this is not the case, the algorithm reports a missing

ICSE °20, May 23-29, 2020, Los Alamitos, CA, USA

Algorithm 1 Detecting Faults

Input: p € FSAcc, g € DG
1: for all (b1, by) € V XV do
2: if by <, by and not HASPATH(g, by, bz) then
report MOR between by, b,
end if
if by ~, b; and not HASNOTIFICATIONPATH(g, b1, b2) then
report MN from b; to b,
end if

3
4
5:
6:
7
8: end for

ordering relationship, that is, b1 must be applied before b,. To iden-
tify missing notifiers, the algorithm operates in a similar manner.

In this case though, the algorithm is interested in paths that contain
notif
only N edges (i.e., the function HASNOTIFICATIONPATH, line 8).

As as an example, recall that the analyzer yielded the file <,
exec relationship when it examined the trace file of Figure 4. The
algorithm verifies this relationship by viewing the dependency
graph of Figure 9. It then reports a missing ordering relationship
because there is not a path from file to exec.

Remark: Observe that our approach does not make any assump-
tion about the execution order imposed by Puppet, i.e., it does not
require the resources with missing ordering relationships to be ap-
plied in the right order so that it infers their inter-dependencies. It
is clear from the example trace of Figure 4 (where Puppet executes
resources in the erroneous order) that our method is still able to
observe that exec depends on file and eventually report the fault.

5 IMPLEMENTATION

We have developed a prototype that implements our approach in
OCaml. The tool provides a command-line interface, and takes as
input the path where the main Puppet manifest is located. It then
stores the compiled catalog of the program, and executes it using
strace to collect the system call trace. In turn, the tools employs
the trace analyzer and fault detector as described in Sections 3,
and 4.

We have implemented our method with efficiency in mind. Our
tool is able to handle GB-sized traces with reasonable time and space
requirements (see Section 6.4). This was made possible through a
number of optimizations, such as the use of streams to process and
analyze traces, a reversed inode table to lookup paths based on
their inodes, and function memoization.

Currently, our tool has only been tested on Linux distributions.
Also, as we discuss this in Section 6, our tool may produce false
positives when two Puppet resources operate on the same file, but
they are commutative to each other, i.e., the application order does
not matter. Even though commutative pairs are not so common
(see Section 6.5), we plan to address this issue in future work by
examining Puppet catalogs to identify such pairs. For instance,
we could identify resources whose execution is conditional, and
depends on the presence of conflicting resources.

6 EVALUATION

We evaluate our framework by examining a large number of Puppet
modules in order to answer the following research questions.

RQ1 Is the proposed approach effective for finding faults in Puppet
manifests? (Section 6.2)

ICSE ’20, May 23-29, 2020, Los Alamitos, CA, USA

RQ2 What are the main patterns of the detected faults? (Section
6.3)
RQ3 What is the performance of our approach? (Section 6.4)

6.1 Experimental Setup

We collected a large number of Puppet modules taken from Forge
ApI and Github. We were particularly interested in non-deprecated
modules that support Debian Stretch, because Debian is one of the
most popular Linux distributions [1]. We inspected the top-1000
modules returned by the Forge ap1 that satisfied our search criteria.
We used Docker to spawn a clean Debian environment efficiently.
Then, we automatically ran every module separately through the
include <module-name> statement.> We monitored the Puppet
process and collected the system call trace of every program via
strace. Through this process, we successfully applied 354 Puppet
modules in total. The remaining modules failed because they re-
quired extra arguments or further setup before their invocation.
For example, many of the failing modules required multiple pre-
installed packages, or in other cases we needed to infer specific
values for the modules’ arguments including 1ps of DNs servers
and URLs of specific upstream directories. Note that the failing
modules and the successful ones were pretty similar in terms code
size, popularity, and age in Puppet Forge. Notably, the list of ana-
lyzed modules contains well-established ones, including modules
developed by popular organizations, such as Puppet Inc., and Vox
Pupuli.# Finally, for every Puppet module that succeeded, we ran
each step of our approach (trace analysis and fault detection) and

logged the reports generated by our tool.
To compute the performance of our approach we ran the trace

analysis and fault detection steps ten times to get reliable measure-
ments. By examining the standard deviation, we observed that the
running times did not vary significantly among different executions.
All the experiments were run on a machine with an Intel i7 2.2cHz
processor with 12 logical cores and 16GB of RAM.

6.2 Fault Detection Results

Our framework detected 92 previously unknown faults in 33 Puppet
modules. Table 1 presents the analysis results for each module. To
the best of our knowledge, this is the first study that led to the
disclosure of such a large number of faults in Puppet repositories.
Our tool marks 70 out of 92 faults as missing ordering relationships
(column MoR). The remaining faults are related to missing notifiers
(column MN). Remarkably, our tool found faults in modules that are
widely used by the Puppet community e.g., puppetlabs-apache (>
9000k downloads), and deric-zookeeper (> 4500k downloads),
Based on the reports of our tool, we manually verified that each
reported fault can lead to a problematic situation by reproducing
each case. Specifically, we repeatedly applied every manifest in a
clean container until Puppet applied resources in the wrong order,
leading to a failure or an inconsistent state. Only few trials were
needed (1-3) for that. In turn, we submitted fixes to the developers.
The development teams of 24 projects confirmed and fixed 62/92
issues in total. The developers welcomed our patches. Notably,
in some projects (e.g., deric-zookeeper, Slashbunny-phpfpm,

3 include applies all the resources defined in the module using the default settings.
4 Vox Pupuli is a big community that is currently managing and maintaining more
than one hundrend Puppet modules. https://voxpupuli.org/

Thodoris Sotiropoulos,* Dimitris Mitropoulos*¥ and Diomidis Spinellis*

Table 1: Faults found in Puppet modules. Each table entry
consists of the name of the module, the number of faults
detected by our tool and a check mark indicating whether
our fixes were accepted by the module’s developers.

Number of Faults Fix
Module Total MOR MN | Accepted

F#*

—_
S
—
S

puppet-proxysql
istlab-stereo
olivierHa-influxdb
hetzner-filebeats

N

geoffwilliams-auditd
coreyh-metricbeat
coreyh-packetbeat
norisnetwork-packetbeat

NN XXX\

Slashbunny-phpfpm
nogueirawash-mysglserver

O 0 ® N U R W N =

—

11 cirrax-dovecot

12 nextrevision-flowtools

13 deric-zookeeper

14 _albatrossflavour-os_patching
15 ' hardening-os_hardening

16 vpgrp-influxdbrelay

SNNNNXN1XNXNY

17 puppet-collectd

18 sgnl05-sssd

19 - jgazeley-freeradius
20 saz-ntp

NN

21 walkamongus-codedeploy
22 spynappels-support_sysstat
23 roshan-mysqlzrm

N\

24 puppetfinland-nano
25 noerdisch-codeception

26 baldurmen-plymouth

27 saz-locales

28 alertlogic-al_agents

29 puppet-telegraf

30 puppetlabs-apache

31 example42-apache

32 alexharvey-disable_transparent_hugepage

e e e e i T W S S N R N R U U U U O R P R N N - A= RN B}
© O O O O R E OO NN NO R = WN R R R a0
H R R e m 000 00 OO0 NN MR EE O OO WNNONOOOO R RO O

NN\

33 camptocamp-ssh
Total

o
N
g
=
N
N

62/92

cirrax-dovecot, and more), the developers provided instant bug-
fix releases after the approval of our patches. This indicates that
our tool detects faults that are meaningful to developers. At the
time of the submission, none of our patches have been rejected.

6.3 Fault Patterns

Below, we categorize and discuss some of the faults identified by
our tool. Most represent previously unknown to us fault patterns
which we learned through our tool. Notably, these detected faults
can lead to crashes, inconsistent states, and data loss.

6.3.1 Missing Ordering Relationships. We have observed three
types of missing ordering relationships issues.

Generate-Use Violation. The use of a resource must always
succeed its creation. Many modules fail to preserve that order-
ing relationship. Consequently, the execution of Puppet may com-
plete with failures, when resources are applied in an erroneous
order. We observed this violation in 16 Puppet modules such as
alertlogic-al_agents, hardening-os_hardening, and more.

Figure 10 shows a fragment from alertlogic-al_agents [17].
The code first fetches a . deb package (a Debian archive) using the

https://voxpupuli.org/

Practical Fault Detection in Puppet Programs

1 $package_path = "/tmp/al-agent"
2 exec {"download":
3 command => "/usr/bin/wget -0 ${package_path} ${pkg_url}",
4 3
5 package {"al-agent":
6 ensure => "installed",
7 provider => "dpkg",
8 source => $package_path,
9 %
Figure 10: An ordering violation between package and exec.

wget command (lines 2-4). The package is stored in the path speci-
fied by the $package_path variable whose value is /tmp/al-agent.
Then, the code installs the Debian archive on the system (lines 5-
9) through the dpkg package management system. It is easy to
see that the package depends on the exec, because it requires
$package_path (the .deb file) to exist in the system (line 8) so
that it can install the package successfully. Otherwise, when Pup-
pet processes package before exec the application of the catalog
fails with the following error: “dpkg: error: cannot access archive
"/tmp/al-agent": No such file or directory”.

Configure-Use Violation. The configuration of a file must
precede its use. For example, when a service starts, all the files
consumed by that service have to be properly configured. This
category differs from the previous one because when a Puppet
resource attempts to use the file, the latter exists in the system.
However, this is not in the expected state (e.g., the file does not
have the right contents, permissions, etc). This error pattern ap-
pears in five modules, including saz-ntp, vpgrp-influxdbrelay,
and jgazeley-freeradius.

Figure 1 illustrates a program with an issue related to this cate-
gory. When the shell script is invoked, the configuration file is guar-
anteed to be there because package creates it during installation.
However, it is possible that exec does not read the desired contents
of the /etc/mysql/my. cnf file specified by content => "user db
settings.." (line 4), because there is a missing ordering relation-
ship between file and exec. Note that this category—unlike the
previous one—may lead to errors that are difficult to debug as the
application of the catalog does not produce any error messages.

API Misuse. Many Puppet modules expose an API that other
modules rely on to build their functionality. These Apis may es-
tablish some constraints that the dependent modules need to re-
spect to achieve the intended functionality. As with traditional
software [2, 18], failing to do so can have a negative impact on the
reliability of applications. In particular, in Puppet, API misuses can
lead to missing dependencies and race conditions. Eight modules
(such as puppet-proxysql) do not properly use the a1 of their
dependencies, causing the ordering violations reported by our tool.

For example, the puppetlabs-apt module provides an inter-
face for managing apt® sources and keys. The apr1 of this module
includes—among other things—the apt: : source resource and the
apt: :update class. The former is used for adding new repositories
to the list of apt sources, while the latter retrieves all the essential
information about the newly-added repositories by executing the
apt update command. The puppet-proxysql module employs the
apt: :source resource to add the http://repo.proxysql.com/

Shttps://salsa.debian.org/apt-team/apt

ICSE °20, May 23-29, 2020, Los Alamitos, CA, USA

repository from which it installs proxysql (via the package re-
source). The documentation of the puppetlabs-apt’s Apr [26]
states: “If you are adding a new source and trying to install packages
from the new source on the same Puppet run, your package resource
should depend on Class[apt::update’], as well as depending on the
Apt::Source resource”. However, the developers of puppet-proxysql
consider only the Apt: : Source dependency in their code, i.e., they
omit the Class[apt: :update] dependency. As a result, the code
may crash with an “Unable to locate package proxysql” message,
when Puppet tries to install proxysql, before invoking the apt
update command first. The developers of puppet-proxysql im-
mediately confirmed and fixed this fault.

6.3.2 Missing Notifiers. We have identified three different cate-
gories of issues related to notifiers.

Configuration Files. A configuration file must always send
notifications to a service, so that any change to that file triggers the
restart of the corresponding service. Although this is a standard
pattern, we observed that in four modules (shown in rows 12, 19,
20, 32 of Table 1) this is not the case.

Log Files. Typically, services log various events in dedicated
files. For instance, the log file of an Apache server records every
incoming HTTP request. Log files are essential for debugging and
monitoring purposes [35, Item 56]. When a service starts, it opens
a corresponding log file, which remains open, while the service is
up, to write any events that take place.

We discovered issues related to logging in two popular Pup-
pet modules (puppetlabs-apache, and deric-zookeeper). These
modules declare the log files for the apache and zookeeper ser-
vices in their manifests. However, the log files do not have a notifier
for their associated services. This may lead to data loss. Consider
the case where the log file of a service is removed or renamed.
When we remove or rename an open file, the underlying system
call (unlink or rename) only changes the file entry, not the inode.
This means that although the filename disappears from the file
system and Puppet creates a new one, the service still uses a file
descriptor that points to the inode of the original file. The issue is
that after removal, the inode typically becomes an orphan (i.e., it is
not linked with any file), which means that it is no longer accessible
through a file path. Therefore, in the case of a missing notifier, the
log history of the upcoming events is lost because the service writes
to an orphan inode. To fix that issue, the log file should notify the
service so that the service opens the newly-created log file. The
developers of both projects confirmed this kind of fault.

Packages. When Puppet applies a package resource, the ser-
vice that depends on that package should restart. This ensures
that a service gets all the necessary updates, including, security
patches, new features, and more. Our tool identified this kind
of issue in twelve modules, including example42-apache, and
puppet-telegraf. Specifically, the package resources that are re-
sponsible for installing Apache, and telegraf do not notify the run-
ning instances whenever there is a new version of those packages.

6.4 Performance

Figure 11 shows the running times (in seconds) of the trace analyzer
and fault detector relatively to the size of the provided traces (in
MB). We observe that the correlation between the trace size and
analysis time is almost linear. Notably, our framework is able to

https://salsa.debian.org/apt-team/apt

ICSE ’20, May 23-29, 2020, Los Alamitos, CA, USA

40

Analysis Time (s)
3

'f'f' .

o

0 250 500 750 1000 1250
Trace Size (MB)

Figure 11: The trace analysis and fault detection time as a
function of the trace size. Each spot shows the average time
spent on both the trace analysis and fault detection phases
for a given trace obtained by the execution of a module.

handle a large volume of traces (more than 1.2GB) in a reasonable
amount of time (< 40 seconds). The average trace size and analysis
time of the inspected modules is 72 MB and 2 seconds respectively.

There are 4 cases out of 354 where the execution times were
relatively high compared to the remaining modules. However, they
all remain in acceptable limits. By examining the characteristics
of the traces coming from these modules, we observed that they
contain more unlink system calls than the rest of the modules.
Such calls involve more expensive operations on the analysis state.

For collecting traces using strace, our tool imposes a 1.68 times
slowdown on Puppet, on average. Unlike existing work [13], though,
our approach requires only a single Puppet execution to locate
faults. Overall, we argue that the overhead of our tool is relatively
small, and our approach can be used as part of the testing process
for Puppet manifests.

6.5 False Positives

Beyond the actual faults listed in Table 1, we have identified 17
false positives in 9 out of 354 Puppet modules Fourteen false alarms
are related to commutative resources reported as missing ordering
relationships. For example, in the claranet-varnish module [5],
the developers use two different resources to partially configure a
certain file. On the one hand they use file to set the permissions
and ownership of the file, and on the other, they use exec to initial-
ize its contents. In this case the execution order in which Puppet
processes resources does not matter. Specifically, Puppet can first
use exec to create the file with the desired contents, and then apply
file to set the appropriate file’s attributes, or vice versa. However,
as observed in the inspected modules, configuring a file through
the combination of resources is not particularly common.

Only three false positives are associated with missing notifiers.
The developers of bodgit-dbus [7] use a custom command (ex-
pressed via exec) to reload the configuration of the service. Con-
sequently, the configuration files notify the exec resource instead
of service. We did not observe this case elsewhere, because Pup-
pet programmers typically employ the restart parameter of the
service type to define a custom restart command in the following
manner: ‘service { restart => "/custom/cmd", ...}’

7 RELATED WORK

Our work is related to three research areas, namely quality in IaC,
trace analysis, and modeling of file systems operations.

Quality in IaC. With the proliferation of the IaC process, there
have been numerous attempts to identify defects and quality con-
cerns in configuration code.

Thodoris Sotiropoulos,* Dimitris Mitropoulos*¥ and Diomidis Spinellis*

A number of studies focus on maintainability issues. Sharma
et al. [33] design and implement a code-smell detection scheme
for Puppet, which searches for issues related to naming conven-
tions, code design, indentation, etc. Their findings suggest that such
anti-patterns—as in the traditional programs—exist in many IaC
repositories. Van der Bent et al. [36] introduce a quality model for
Puppet programs which is empirically evaluated by interviewing
practitioners from industry. Schwarz et al. [31] do similar work
focusing on Chef recipes. Endeavors have recently moved to the
identification of security issues. Rahman et al. [28] define and clas-
sify security smells into seven categories (such as hard-coded pass-
words, use of weak cryptographic algorithms), and then build a tool

for statically detecting these smells in Puppet repositories.

Other studies attempt to extract error patterns and source code
properties from the analysis of defective IaC programs. Rahman et
al. [29] employ machine learning and text processing techniques to
identify properties that faulty Puppet programs hold. Then, they
build a prediction model for asserting whether IaC scripts mani-
fest faults or not. Chen et al. [4] identify error patterns in Puppet
manifests by following a different‘approach. First, they inspect the
code changes from repositories’ commits. Second, they construct
an unsupervised learning model to detect error patterns based on
the clustering of the proposed fixes. Their approach is based on the
assumption that similar faults are fixed with similar patches [12].

There are few automated techniques proposed for improving the
reliability of configuration management programs. Rehearsal [32]
statically verifies that a given Puppet configuration is deterministic
and idempotent. Rehearsal models a given Puppet manifest in a
small language called Fs and then it constructs logical formulas
based on the semantics of each language’s primitive. Then, an smT
solver decides whether the initial program is non-deterministic
or not. Compared to our approach, Rehearsal is less effective and
practical. Specifically, Rehearsal employs a form of static analysis
that can only handle a subset of Puppet programs. For example, the
analysis does not support exec resources because it is unable to
reason about the file system resources that shell commands process.
Unlike Rehearsal, our approach works by reasoning actual system
calls rather than Puppet manifests; thus, it can effectively determine
which files are affected by a Puppet run and how.

Other advances [13, 16] adopt a model-based testing approach
for checking whether configuration scripts meet certain proper-
ties. Hummer et al. [16] focus on testing the idempotence of Chef
scripts. Their proposed framework generates multiple test cases
that explore different task schedules. By tracking the changes in
the system trigged by a Chef script, they determine if idempotence
holds for the given program. Hanappi et al. [13] extend the work
of Hummer et al. and introduce Citac; a framework that can be ap-
plied to Puppet manifests to examine the convergence of programs.
Convergence states that the system reaches a desired state even at
the presence of failed Puppet resources. They formally express the
properties of idempotence and convergence, and through test case
generation, they verify if the provided manifests violate those prop-
erties. Contrary to Citac, we adopt a more lightweight approach
applying manifests only once. Finally, neither Rehearsal nor Citac
detect issues involving missing notifiers.

Trace Analysis. Analysis of system call traces has been widely
used in the past, especially in the context of dependency inference

Practical Fault Detection in Puppet Programs

for builds scripts. Many existing approaches are used for refactoring
and testing [11], boosting performance [3, 6] of builds, or detecting
license inconsistencies in open-source projects [37]. As discussed in
Section 3.1, most of them do not deal with the intricacies of system
calls. This degrades the precision and effectiveness of the analysis.
Also, unlike existing work, our trace analysis enables us to compute
relationships in higher-level of abstraction, i.e., Puppet resources.

Modeling File System Operations. Several researchers have
designed specifications for the posix file system [9, 14, 24]. The
specifications mainly focus on program reasoning and verification.
Shambaugh et al. [32] have introduced Fs; a small language used
to model the effects of Puppet resources on the file system. In this
work, we model system calls rather than Puppet resources.

8 CONCLUSION

We have introduced an effective and practical approach for identi-
fying missing dependencies and notifiers in Puppet manifests. Our
method collects the system calls invoked by a Puppet program and
models them in FStrace. Through FStrace, we design a trace analysis
that captures how higher-level programming constructs, such as
Puppet resources, interact with the operating system. This enables
us to infer their inter-relationships, and check these relationships
against the program’s dependency graph for potential mismatches.

The effectiveness of our approach is exemplified by the uncov-
ering of 92 previously unknown issues in 33 projects, including
well-established ones, such as puppetlabs-apache. Notably, 62 of
them were confirmed and fixed by the developers. We have further
showed that our tool can handle realistic traces in a couple of sec-
onds. Our results indicate that our tool can be used as part of the
testing process for Puppet programs.

FStrace is a generic model that can be applied to other domains
with partially ordered constructs. Consequently, future studies
can build on our work to detect concurrency faults in many other
areas.

REFERENCES

[1] Bram Adams, Ryan Kavanagh, Ahmed E. Hassan, and Daniel M. German. 2016. An
empirical study of integration activities in distributions of open source software.
Empirical Software Engineering 21,3 (01 Jun 2016), 960-1001.

[2] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini. 2018. A System-
atic Evaluation of Static API-Misuse Detectors. IEEE Transactions on Software
Engineering (2018), 1-1.

[3] Glenn Ammons. 2006. Grexmk: Speeding Up Scripted Builds. In Proceedings of
the 2006 International Workshop on Dynamic Systems Analysis (Shanghai, China)
(WODA *06). ACM, New York, NY, USA, 81-87.

[4] W.Chen, G. Wu, and J. Wei. 2018. An Approach to Identifying Error Patterns
for Infrastructure as Code. In 2018 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW). 124-129.

[5] Claranet. 2019. Install and configure Varnish Cache. https://forge.puppet.com/
claranet/varnish.

[6] Derrick Coetzee, Anand Bhaskar, and George Necula. 2011. apmake: A reliable
parallel build manager. In 2011 USENIX Annual Technical Conference (USENIX).

[7] Matt Dainty. 2019. Puppet Module for managing D-Bus. https://forge.puppet.
com/bodgit/dbus.

[8] Thomas Delaet, Wouter Joosen, and Bart Vanbrabant. 2010. A Survey of System

Configuration Tools. In Proceedings of the 24th International Conference on Large

Installation System Administration (San Jose, CA) (LISA’10). USENIX Association,

Berkeley, CA, USA, 1-8.

L. Freitas, Z. Fu, and J. Woodcock. 2007. POSIX file store in Z/Eves: an experiment

in the verified software repository. In 12th IEEE International Conference on

Engineering Complex Computer Systems (ICECCS 2007). 3-14.

Github. 2014. DNS Outage Post Mortem - The GitHub Blog. https://github.blog/

2014-01-18-dns-outage-post-mortem/. [Online; accessed 28-January-2019].

[9

=

[10

ICSE °20, May 23-29, 2020, Los Alamitos, CA, USA

[11] Milos Gligoric, Wolfram Schulte, Chandra Prasad, Danny van Velzen, Iman
Narasamdya, and Benjamin Livshits. 2014. Automated Migration of Build Scripts
Using Dynamic Analysis and Search-based Refactoring. In Proceedings of the 2014
ACM International Conference on Object Oriented Programming Systems Languages
& Applications (Portland, Oregon, USA) (OOPSLA ’14). ACM, New York, NY, USA,
599-616.

[12] Quinn Hanam, Fernando S. de M. Brito, and Ali Mesbah. 2016. Discovering Bug
Patterns in JavaScript. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (Seattle, WA, USA) (FSE 2016).
ACM, New York, NY, USA, 144-156.

[13] Oliver Hanappi, Waldemar Hummer, and Schahram Dustdar. 2016. Asserting
Reliable Convergence for Configuration Management Scripts. In Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (Amsterdam, Netherlands) (OOPSLA 2016).
ACM, New York, NY, USA, 328-343.

[14] Wim H. Hesselink and Muhammad ITkram Lali. 2012. Formalizing a hierarchical

file system. Formal Aspects of Computing 24, 1 (01 Jan 2012), 27-44.

J. Humble, C. Read, and D. North. 2006. The deployment production line. In

AGILE 2006 (AGILE’06). 6 pp.-118.

Waldemar Hummer, Florian Rosenberg, Fabio Oliveira, and Tamar Eilam. 2013.

Testing Idempotence for Infrastructure as Code. In Middleware 2013, David Eyers

and Karsten Schwan (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 368—

388.

Alert Logic Inc. 2019. Alert Logic Agent Puppet Module. https://forge.puppet.

com/alertlogic/agents.

Maria Kechagia, Xavier Devroey, Annibale Panichella, Georgios Gousios, and Arie

van Deursen. 2019. Effective and Efficient API Misuse Detection via Exception

Propagation and Search-based Testing. In Proceedings of the 28th ACM SIGSOFT

International Symposium on Software Testing and Analysis (Beijing, China) (ISSTA

2019). ACM, New York, NY, USA, 192-203.

[19] Puppet Labs. 2018. Catalog compilation - Puppet (PE and open source) 5.5. https:
//puppet.com/docs/puppet/5.5/subsystem_catalog_compilation.html. [Online;
accessed 28-January-2019].

[20] Nandor Licker and Andrew Rice. 2019. Detecting Incorrect Build Rules. In

Proceedings of the 41st International Conference on Software Engineering (Montreal,

Quebec, Canada) (ICSE ’19). IEEE Press, Piscataway, NJ, USA, 1234-1244.

James Loope. 2011. Managing Infrastructure with Puppet: Configuration Manage-

ment at Scale. O’Reilly Media.

[22] Richard McDougall, Jim Mauro, and Brendan Gregg. 2006. Solaris Performance

and Tools: DTrace and MDB Techniques for Solaris 10 and OpenSolaris. Prentice

Hall PTR, Upper Saddle River.

Kief Morris. 2016. Infrastructure As Code: Managing Servers in the Cloud (1st ed.).

O’Reilly Media, Inc.

Gian Ntzik, Pedro da Rocha Pinto, Julian Sutherland, and Philippa Gardner. 2018.

A Concurrent Specification of POSIX File Systems. In 32nd European Conference

on Object-Oriented Programming (ECOOP 2018) (Leibniz International Proceedings

in Informatics (LIPIcs)), Todd Millstein (Ed.), Vol. 109. Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik, Dagstuhl, Germany, 4:1-4:28. https://doi.org/10.4230/

LIPIcs.ECOOP.2018.4

Shawn Plummer and David Warden. 2016. Puppet: Introduction, Implementation,

& the Inevitable Refactoring. In Proceedings of the 2016 ACM on SIGUCCS Annual

Conference (Denver, Colorado, USA) (SIGUCCS °16). ACM, New York, NY, USA,

131-134.

Puppet. 2019. Provides an interface for managing Apt source, key, and definitions

with Puppet. https://forge.puppet.com/puppetlabs/apt.

[27] Puppet. 2019. Puppet Forge. https://forge.puppet.com/.

[28] Akond Rahman, Chris Parnin, and Laurie Williams. 2019. The Seven Sins: Security
Smells in Infrastructure As Code Scripts. In Proceedings of the 41st International
Conference on Software Engineering (Montreal, Quebec, Canada) (ICSE ’19). IEEE
Press, Piscataway, NJ, USA, 164-175.

[29] A.Rahman and L. Williams. 2018. Characterizing Defective Configuration Scripts
Used for Continuous Deployment. In 2018 IEEE 11th International Conference on
Software Testing, Verification and Validation (ICST). 34-45. https://doi.org/10.
1109/ICST.2018.00014

[30] R. Rodriguez. 1986. A System Call Tracer for UNIX. In USENIX Conference
Proceedings (Atlanta, GA). USENIX Association, Berkeley, CA, 72-80.

[31] Julian Schwarz, Andreas Steffens, and Horst Lichter. 2018. Code Smells in In-

frastructure as Code. In 2018 11th International Conference on the Quality of

Information and Communications Technology (QUATIC). IEEE, 220-228.

Rian Shambaugh, Aaron Weiss, and Arjun Guha. 2016. Rehearsal: A Configuration

Verification Tool for Puppet. In Proceedings of the 37th ACM SIGPLAN Conference

on Programming Language Design and Implementation (Santa Barbara, CA, USA)

(PLDI ’16). ACM, New York, NY, USA, 416-430.

Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does Your

Configuration Code Smell?. In Proceedings of the 13th International Conference

on Mining Software Repositories (Austin, Texas) (MSR '16). ACM, New York, NY,

USA, 189-200.

[15

[16

(17

oy
&

[21

[23

[24

[25

I
&

[32

[33

https://forge.puppet.com/claranet/varnish
https://forge.puppet.com/claranet/varnish
https://forge.puppet.com/bodgit/dbus
https://forge.puppet.com/bodgit/dbus
https://github.blog/2014-01-18-dns-outage-post-mortem/
https://github.blog/2014-01-18-dns-outage-post-mortem/
https://forge.puppet.com/alertlogic/agents
https://forge.puppet.com/alertlogic/agents
https://puppet.com/docs/puppet/5.5/subsystem_catalog_compilation.html
https://puppet.com/docs/puppet/5.5/subsystem_catalog_compilation.html
https://doi.org/10.4230/LIPIcs.ECOOP.2018.4
https://doi.org/10.4230/LIPIcs.ECOOP.2018.4
https://forge.puppet.com/puppetlabs/apt
https://forge.puppet.com/
https://doi.org/10.1109/ICST.2018.00014
https://doi.org/10.1109/ICST.2018.00014

ICSE ’20, May 23-29, 2020, Los Alamitos, CA, USA

[34]
[35]

[36]

[37]

D. Spinellis. 2012. Don’t Install Software by Hand. IEEE Software 29, 4 (July 2012),
86-87.

Diomidis Spinellis. 2016. Effective Debugging: 66 Specific Ways to Debug Software
and Systems. Addison-Wesley Professional, Boston, MA.

Edward van der Bent, Juriaan Hage, Joost Visser, and Georgios Gousios. 2018.

How good is your puppet? An empirically defined and validated quality model for
Puppet. In 2018 IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER) (Campobasso, Italy) (SANER 2018). 164-174.

Sander van der Burg, Eelco Dolstra, Shane McIntosh, Julius Davies, Daniel M.

German, and Armijn Hemel. 2014. Tracing Software Build Processes to Uncover

Thodoris Sotiropoulos,* Dimitris Mitropoulos*¥ and Diomidis Spinellis*

License Compliance Inconsistencies. In Proceedings of the 29th ACM/IEEE Inter-
national Conference on Automated Software Engineering (Vasteras, Sweden) (ASE
’14). ACM, New York, NY, USA, 731-742.

[38] Joost Visser, Sylvan Rigal, Gijs Wijnholds, and Zeeger Lubsen. 2016. Building

[39

Software Teams: Ten Best Practices for Effective Software Development. " O’Reilly
Media, Inc.".

Tianyin Xu, Jiagi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan,
Yuanyuan Zhou, and Shankar Pasupathy. 2013. Do Not Blame Users for Miscon-
figurations. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (Farminton, Pennsylvania) (SOSP °13). ACM, New York, NY,
USA, 244-259.

	Abstract
	1 Introduction
	2 Overview
	3 Analyzing System Call Traces
	3.1 Motivation of Design Choices
	3.2 Modeling System Call Traces
	3.3 Interpreting FStrace Programs

	4 Detecting Faults
	4.1 Dependency Graph Construction
	4.2 Fault Detection

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Fault Detection Results
	6.3 Fault Patterns
	6.4 Performance
	6.5 False Positives

	7 Related Work
	8 Conclusion
	References

