
How Network Analysis Can Improve
the Reliability of Modern Software Ecosystems

Paolo Boldi
Dipartimento di Informatica

Università degli Studi di Milano
Milan, Italy

paolo.boldi@unimi.it

Abstract—Modern software development is increasingly de-
pendent on components, libraries and frameworks coming from
third party vendors or open-source suppliers and made avail-
able through a number of platforms (or forges). This way of
writing software puts an emphasis on reuse and on composition,
commoditizing the services which modern applications require.
On the other hand, bugs and vulnerabilities in a single library
living in one such ecosystem can affect, directly or by transitivity,
a huge number of other libraries and applications. Currently,
only product-level information on library dependencies is used
to contain this kind of danger, but this knowledge often reveals
itself too imprecise to lead to effective (and possibly automated)
handling policies. We will discuss how fine-grained function-
level dependencies can greatly improve reliability and reduce
the impact of vulnerabilities on the whole software ecosystem.

Keywords-Software reuse, security breaches, network analysis.

I. TWO STORIES

A. The programmer who almost broke the Internet

In 2016, Azer Koçulu was a 28-year-old software developer
living in Oakland, California. He had been publishing open-
source software for years and uploaded most of his work to
npm, a popular package manager used by many JavaScript
projects to install their dependencies. Like many of us who
write code that anyone can use, Koçulu was adhering to the
ethics of early programmers at MIT and later distilled as a
set of more concrete values put forth by Richard Stallman,
the most famous activist of the free software movement: as
Stallman wrote in his 1985 manifesto [1], “the fundamental act
of friendship among programmers is the sharing of programs”.

One of the many open-source JavaScript libraries that
Koçulu wrote was called kik (it was a library to help
programmers set up their project templates). On March 11,
Koçulu received an email from Bob Stratton, a patent and
trademark agent who was working for kik.com1, the Ontario-
based world-popular messaging app: Stratton was asking
Koçulu to rename his software library to avoid accusations
of trademark infringement.

Koçulu refused to rename his project, even after being
offered 30 000 USD by Mr. Stratton: his principles were more

Partially funded by the FASTEN EU Project, H2020-ICT-2018-2020 (In-
formation and Communication Technologies)

1http://kik.com/

important than money, and he asked Stratton to refrain from
contacting him again. Stratton brought his request up to npm’s
chief executive, Isaac Schuleter, who answered (on March 18):
“In this case, we believe that most users who would come
across [Koçolu’s] kik package, would reasonably expect it to
be related to kik.com. In this context, transferring ownership
of these two package names achieves that goal.”

npm siding with Kik was totally unexpected by Koçulu:
“I know you for years,” he commented, “and would never
imagine you siding with corporate patent lawyers threatening
open source contributors.” In an act of rage, and in the name of
his ideals, on March 20 Koçulu decided to remove from npm
all of his packages. “I dont wanna be a part of npm anymore!”,
he said.

Two days later, on March 22, JavaScript developers all
around the world started to receive a strange error message
when they tried to run their code:

npm ERR! 404 ’left-pad’ is not in the npm registry

Most programmers did not even know what left-pad was,
but somehow their software couldn’t be run without it. In a
matter of hours, many of them found the GitHub repository2

were left-pad was maintained. It turned out to be a mere
11-line-function that adjusted a given string to a desired length
by padding it with blanks on the left.

module.exports = leftpad;
function leftpad (str, len, ch) {
str = String(str);
var i = -1;
if (!ch && ch !== 0) ch = ’ ’;
len = len - str.length;
while (++i < len) {

str = ch + str;
}
return str;

}

Some of the most widely used npm packages were suddenly
broken. Among them, React3, created and used by Facebook;
about one more million of websites were affected. Regard-

2https://github.com/azer/left-pad/issues/4#issue-142787766
3https://facebook.github.io/react/

less of how trivial or humble left-pad might seem, its
disappearance was felt globally, because countless packages
and websites depended directly or indirectly on it. Ironically
enough, even kik.com ran into the left-pad problem—Mike
Roberts, who was managing the company’s messaging app,
said in an interview that the error prevented his colleagues
from running software they had been working on. “What
the heck” Roberts recalled thinking, “one of our packages is
missing?”.

npm finally decided to restore the 11 lines of code. Accord-
ing to Laurie Voss (the chief technology officer of npm) “Un-
un-publishing is an unprecedented action that we’re taking
given the severity and widespread nature of breakage, and
isn’t done lightly. This action puts the wider interests of the
community of npm users at odds with the wishes of one author;
we picked the needs of the many.”

B. The missing patch that costed 4 billion dollars

Equifax is a consumer credit reporting agency founded in
1899, one of the three largest agencies of this kind (along with
Experian and TransUnion); they collect information on over
800 million consumers and almost 100 million businesses of
all countries. In September 2017, Bloomberg News reported
that Equifax had been the victim of a major breach of its
computer systems in March 2017. Equifax announced that the
event potentially impacted approximately 145.5 million US
consumers, and up to 44 million British residents as well as
tens of thousand of people in the rest of the world.

Information accessed by the hacker (or hackers) in the
breach included first names, family names, SSN’s, birth dates,
addresses and, in some cases, driver’s license numbers. Credit
card numbers for approximately 209,000 US consumers were
also accessed.

It is estimated that this massive data breach costed Equifax
an unprecedented amount of more than 4 billion US dollars.
Equifax disclosed in 2017 that the reason behind the attack was
a failure to patch one of its Internet servers against a pervasive
software flaw: the attackers entered the Equifax system in mid-
May through a web-application vulnerability that had a patch
available since March.

The vulnerabilty exploited by the attackers was in the
Apache Struts web-application software. The Apache Soft-
ware Foundation released a statement saying that it was
sorry that attackers exploited a bug in its software to breach
Equifax; nonetheless, according to Ren Gielen (vice-president
of Apache Struts) “Most breaches we become aware of are
caused by failure to update software components that are
known to be vulnerable for months or even years”.

In fact, a study on software security [2] revealed that 80%
of the code in todays’ applications comes from libraries and
about one fourth of such libraries have known vulnerabilities.

II. REPOSITORIES, LIBRARIES, DEPENDENCIES

Back in the old days, software development was a solitary
heroic activity of single men facing the complexity of prob-
lems with their bare hands in the darkness of their caves;

but those days have gone: modern software development
relies more and more on existing third-party libraries, giving
programmers the freedom to focus on the core of what they
have to do, delegating tedious or routine chores to reliable,
specialized libraries they can download from the Internet.

This is just the industrial revolution arriving at the harbour
of software production. In the words of Immanuel Kant: “All
trades, arts, and handiworks have gained by division of labour,
namely, when, instead of one man doing everything, each
confines himself to a certain kind of work distinct from others
in the treatment it requires, so as to be able to perform it
with greater facility and in the greatest perfection. Where the
different kinds of work are not distinguished and divided,
where everyone is a jack-of-all-trades, there manufactures
remain still in the greatest barbarism.” [3]

In free and open-source software, people share their work in
the form of libraries, hosted on centralized code repositories,
such as Maven4, npm or RubyGems, or so-called forges,
such as GitHub5 or SourceForge6; some of these repositories
are language-specific, whereas others are not. Libraries are
distributed on these repositories in the form of suitable artifacts
(e.g., jar files in the case of typical Java libraries), and usually
come in a number of releases: a new release of a library is
published to correct bugs or vulnerabilities found in previous
releases, or to introduce new functionalities. Every release is
identified by some identifier (e.g., a version number). The
granularity (hence, the frequency) of releases changes from
one repository to another (for example, in GitHub releases
actually coincide with commits and are extremely frequent).

From the viewpoint of developers, a number of tools called
package managers are available that allow them to specify
which libraries their code depends from, and that can automa-
tize the process of downloading recursively the dependencies
of a given project and using them to build it. Here is an
example of dependency specification in Maven:

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.8.0</version>

</plugin>

and here is another one for Ivy:

<dependency org="org.slf4j"
name="slf4j-api" rev="[1.7,)"/>

In these examples, you see that dependencies can be
specified with respect to a specific release (in the
first case, we are asking for version 3.8.0 of the
org.apache.maven.plugins library) or to a set of
releases (in the second case, anything starting from version
1.7 of the org.slf4j library will fit). In the second case,

4https://search.maven.org/
5https://github.com/
6https://sourceforge.net/

the decision of which release(s) to use is left to the package
manager, and different package managers may adopt different
strategies.

In Figure 1 you can see a bunch of (releases of) libraries
with their dependencies. Here both library A and library B
depend directly on library C, and transitively on library D.

Lib A, vers 1.0

Lib B, vers 2.5

Lib C, vers 1.5Lib D, vers 3.0

Fig. 1. Various releases of libraries, with their dependencies.

III. THE PRICE OF REUSE

Public software forges, package managers and the resulting
ecosystems made the dream of code reuse a reality, but this
reality comes at a price. These ecosystems are extremely
fragile: according to [4], in 2017 JavaScript libraries used to
have an average of 54.6 libraries they depended upon (directly
or transitively), with a steady growth of more than 60% every
year; there are libraries in RubyGems that are in the transitive
dependency of more than 400 000 other libraries (meaning that
if you remove one them, about 40% of all the libraries in the
ecosystem will cease to work).

Package users gain great value from reusing code, but they
need to invest significant resources into shielding themselves
from software security, legal compliance and source code
incompatibility issues.

According to Snyk’s annual 2019 report on the state of
open-source security7, the number of security issues found in
software almost doubles every two years (+44% every year),
and about 78% of them are found in indirect dependencies.
This observation hints at how complicated sofware mainte-
nance actually is: when a new vulnerability alert is found,
for example, it is essentially impossible to know whether the
issue impacts on a specific library. Of course, the dependency
graph can be used to know if the impact is possible, but it
is not enough to know if the specific piece of code that was
broken is ever actually invoked (directly or indirectly) in the
library we are looking at, and in the positive case what are
the functions that are put at risk and how the problem can be
circumvented.

Even worse: 69% of the developers are totally unaware of
vulnerabilities existing in the libraries they depend upon, and
81.5% of the systems simply don’t update their dependen-
cies [5]. This is probably because on one hand few tools
are available to warn those developers in an automated way;
it is true, for example, that GitHub has recently launched
an automated service notifying repository owners that they
depend on packages affected by known security vulnerabilities,

7https://bit.ly/SoOSS2019

but even so it is like crying wolf: in most cases, vulnerabilities
found in dependencies would not affect their software anyway.

As a concrete example, suppose that a security alert is issued
about Library D (version 3.0) of Figure 1; then by transitivity
all libraries in Figure 2 are potentially infected. But is this
really the case?

Lib A, vers 1.0

Lib B, vers 2.5

Lib C, vers 1.5Lib D, vers 3.0

Fig. 2. If a vulnerability is found in Library D, all other libraries in this
picture may be at risk.

From a different viewpoint, also legal and licensing issues
are made quite complex by dependencies. The complexity of
licensing contracts and their effects on dependencies is often
underestimated by software developers. While several compa-
nies offer license compliance checking services (e.g., Black-
Duck software, WhiteSource, FOSSA), a project’s source code
cannot be checked in isolation from its dependency graph, and
a project’s dependency graph can extend to more components
than what specified in the package manager (e.g., implicit
dependencies on system libraries).

On the other hand, package providers have no reasonable
means of evolving what they offer in an systematic way,
because they are not sure of the impact a change in their
libraries, or in their licensing, can have on their clients.

The issues we just highlighted are related to the relatively
naive design of package managers: they only resolve depen-
dencies based on package versions. As such, they cannot
assess the risk of using dependencies, they cannot notify
developers of critical (e.g., security) updates, nor can they
assist them to evaluate the ecosystem impact of API evolution
tasks (e.g., removing a deprecated method). Even if they
were able to implement such functionalities, they could do
so only at the bulk level of libraries, but not at the level of
function/method.

The idea of moving the analysis of software ecosystems to
the granularity level of functions8 is at the core of the recent
EU Project FASTEN [6]. Specifically, FASTEN aims at build-
ing a fine-grained call graph: ideally, for each library release
in an ecosystem, FASTEN will build a call graph.9 Links to
developer-specified dependencies will then be resolved at the
function-call level. The result is a versioned, ecosystem-level

8Here, by function we abstractly refer to an atomic unit of code, or
subroutine, that performs a specific task. Depending on the programming
language, it can be called a function, or a method, or routine, etc.

9Call graphs can be generated either statically, by analyzing the source
code, or dynamically, by instrumenting the code and tracing program execu-
tions. Static call graphs are simpler to build but they are neither complete
(e.g., because they miss calls by reflection or by dynamic dispatch) nor sound
(some execution paths may never materialize in real executions). Dynamic
call graphs, on the other hand, are strongly dependent on the test cases used
to generate the traces.

call graph, that not only solves the issues identified above,
but also both opens the door to advanced applications and
challenges the current state of the art in graph storage and
processing.

Figure 3 shows the same scenario depicted in Figure 1, but
this time we can see the functions within each library, and
their calls (represented as dotted arrows).

A.f1

A.f2

A.f3

B.f1

B.f2

B.f3

C.f1

C.f2

D.f1

D.f2

D.f3

Fig. 3. A function-level view of Figure 1.

IV. NETWORK ANALYSIS AS A
SOFTWARE-DEVELOPMENT TOOL

Concretely, every (release of a) library can be seen as a
set of functions, each calling other functions either belonging
to the same library or to some other library (specified as a
dependency): it can be abstractly represented as a directed
graph with two types of nodes, internal and external. While
internal nodes represent an actual function within the same
library, external nodes are somehow less precisely identified
— they represent a function in some release of some other
library, but which release is not known, because it depends on
the dependency-resolution process.

The whole dependency-resolution process depends on the
choice of a resolution strategy adopted by the package man-
ager, whose behaviour is determined on the specific release of
a specific library we aim at using as a starting point. At the
end of this process, we can actually identify external nodes
of each single library release involved with internal nodes of
other libraries releases, obtaining the actual global call graph.

Let me offer some examples on how the availability of such
a graph can improve the reliability of software development
practices, and improve the robustness of the whole ecosystem.

• Every time a bug or a security breach is found in a library,
all developers will be able to precisely analyze whether
their applications are calling into vulnerable code and
decide whether dependency updates are necessary; the
ecosystem itself will be able to notify the developers
of vulnerable applications in real-time, after a security

issue has been disclosed. This type of functionality would
have been beneficial in preventing the Equifax breach. By
analyzing security alerts at a function level, you can get
much more precise information and know exactly which
parts of your code need to be fixed: Figure 4 shows that
in our example Library A is not at all impacted by a bug
found in function D.f3, and only some of the functions
of Library B are impacted, but not all of them.

• Using the call graph, one can precisely identify the
ecosystem-wide impact (direct and transitive) that any
API change can have. The change-impact analysis can
become a first-class tool for software developers (much
like a debugger or a profiler is). Developers will be
able to get quantitative answers to questions such as
“How many packages are affected if I remove a certain
method/interface?” and will be able to take decisions
and proactively notify downstream packages for break-
ing changes when an upstream API has changed. The
availability of this kind of tool would have prevented the
left-pad incident, for example.

• The fact that licensing is usually only evaluated at the
library level and not at the function level introduces
(at least conceptually) a rigidity that we might want to
remove. Think of a library where different subroutines
may have different licensing contracts. Using the call
graph we can check that function-level licenses of our
own software are consistent with one another, and that
they are consistent with the licenses attached to the
libraries our software depends from.

More generally, the call graph contains a big deal of infor-
mation about software that could not be obtained otherwise. In
particular, the notion of centrality [7] applied to the call graph
can determine which parts of the software ecosystem are more
relevant; this information can be used to target critical or risky
functions, or to better concentrate maintenance efforts of large
software repositories. This path can be though of as moving
one step beyond the traditional approach to profiling, using
network analysis methods as its main weapon.

V. SOLUTIONS & CHALLENGES

So far so good. But how feasible is all this? It is difficult to
have a precise evaluation of the sizes involved in this ambitious
project. As an example, the unified call graph Hejderup et
al. [8] built for Rust contained 6 million nodes and 16 million
edges. But Rust as an ecosystem is an order of magnitude
smaller than that of Java or Python. As another example, the
Software Heritage Archive [9] collects about 80M projects
with about 1B of revisions. Even assuming a prudent estimate
of about 100 functions per revision, we are talking of graphs
with about 1011 nodes, and thousands of billions of arcs!

These kinds of graphs challenge the current state-of-art in
graph processing systems, especially considering that those
graphs change frequently and that they materialize dynami-
cally based on the dependency-resolution strategy. In addition,
such graphs will need to be queried (e.g., traversed and sliced)
in real time by clients.

A.f1

A.f2

A.f3

B.f1

B.f2

B.f3

C.f1

C.f2

D.f1

D.f2

D.f3

Fig. 4. The function-level view shows that if the vulnerability in Library
D is because of function D.f3, then only C.f2, B.f2 and B.f3 are at risk. In
particular, none of the functions within Library A is involved.

This challenge calls for new, aggressive, dynamic compres-
sion techniques, specially tailored around the structure and
topology of call graphs, that can go beyond the state-of-art
in graph compression [10]. For deeper analysis and ranking it
might be necessary to store in compact form some metadata
about the actual calls. For example, the users might contribute
profiling data making it possible to decorate arcs of the graph
with the estimated number of times a particular function is
called at a specific location in the code: such information
would be invaluable in the ranking process, but it would
require further storage and new as-yet unknown compression
techniques.

What we have just described is only the backbone behind
a set of tools and services that should integrate with the final
developer’s programming environment (e.g., in the form of
plugins for the programmers’ favourite IDE) as well as with
continuous integration tools.

Although the path we described is still long and winding,
the pot of gold is so precious that it totally justifies the
efforts: a new world for developers where they can instantly be
alerted when one of their dependencies is outdated or declared
vulnerable, which functions are impacted by this, whether they
are violating any copyrights, etc.—A world of total integration
between software producers and the ecosystem where they
live.

ACKNOWLEDGEMENT

I want to express my gratitude to Georgios Gousios, Sebas-
tiano Vigna and Stefano Zacchiroli for their precious help.

REFERENCES

[1] R. Stallman, “The GNU manifesto,” Dr. Dobb’s Journal of Software
Tools, vol. 10, no. 3, pp. 30–??, Mar. 1985. [Online]. Available:
\texttt{https://www.gnu.org/gnu/manifesto.en.html}

[2] J. Williams and A. Dabirsiaghi, “The unfortunate reality of insecure
libraries,” Asp. Secur. Inc, pp. 1–26, 2012.

[3] I. Kant, Groundwork for the Metaphysics of Morals. Oxford University
Press, 2002 [1785].

[4] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl, “Structure and
evolution of package dependency networks,” in Proceedings of the
14th International Conference on Mining Software Repositories, MSR
2017, Buenos Aires, Argentina, May 20-28, 2017, 2017, pp. 102–112.
[Online]. Available: https://doi.org/10.1109/MSR.2017.55

[5] R. G. Kula, D. M. Germán, A. Ouni, T. Ishio, and K. Inoue, “Do
developers update their library dependencies? an empirical study on
the impact of security advisories on library migration,” CoRR, vol.
abs/1709.04621, 2017. [Online]. Available: http://arxiv.org/abs/1709.
04621

[6] “FASTEN: Fine-grained analysis of software ecosystems as networks,”
2019–2021, H2020-ICT-2018-2020 (Information and Communication
Technologies).

[7] P. Boldi and S. Vigna, “Axioms for centrality,” Internet Math., vol. 10,
no. 3-4, pp. 222–262, 2014.

[8] J. Hejderup, M. Beller, and G. Gousios, “Building a unified call graph
at ecosystem level,” Delft University of Techology, Tech. Rep. TUD-
SERG-2018-002, Apr 2018, online: http://gousios.org/pub/ucg.pdf.
[Online]. Available: http://gousios.org/pubs/ucg.pdf

[9] J.-F. Abramatic, R. Di Cosmo, and S. Zacchiroli, “Building the universal
archive of source code,” Communications of the ACM, vol. 61, no. 10,
pp. 29–31, October 2018.

[10] P. Boldi and S. Vigna, “(web/social) graph compression,” in Encyclope-
dia of Big Data Technologies., S. Sakr and A. Y. Zomaya, Eds. Springer,
2019.

